Notes 36
- π‘ Prompt Engineering 101: Deep Dive & Best Practices
- π‘ Prompting: CO-STAR Framework
- π Time Series Analysis & Forecasting: Deep Dive & Best Practices
- π HTTP Standards: Quick Guide & Best Practices
- π React.JS: Deep Dive & Best Practices
- π NGINX: Deep Dive & Best Practices
- π SQLite: Deep Dive & Best Practices
- π DuckDB: Deep Dive & Best Practices with Python
- π TypeScript: Deep Dive & Best Practices (2025)
- π Tailwind CSS: Deep Dive & Best Practices
- π JavaScript: Deep Dive & Best Practices (ES2024)
- π CSS3: Deep Dive & Best Practices
- π LightGBM: Deep Dive & Best Practices
- π HTML5 / CSS3: Deep Dive & Best Practices
- π CatBoost: Deep Dive & Best Practices
- π XGBoost: Deep Dive & Best Practices
- π Statsmodels: Deep Dive & Best Practices
- π Python DS/ML/DL/NLP Libraries β Popular Categories Index
- π Flask: Deep Dive & Best Practices
- π Streamlit: Deep Dive & Best Practices
- π FastAPI: Deep Dive & Best Practices
- π Scikit-learn: Deep Dive & Best Practices
- π Docker Technologies: Deep Dive & Best Practices
- π Pip: Deep Dive & Best Practices
- π Conda: Deep Dive & Best Practices
- π Pandas: Deep Dive & Best Practices
- π NumPy: Deep Dive & Best Practices
- π MySQL: Deep Dive & Best Practices
- π DSML: Deep Learning Metrics
- βοΈ DSML: MLOps Lifecycle Checklist
- π DSML: Machine Learning Workflow & Lifecycle Illustrated
- π DSML: Machine Learning Metrics
- π DSML: Introduction to Machine Learning
- π Streamlit and Model Serialization in Python
- π TODO β Notes
- π Git & GitHub Basics